

Fourth Semester B.E. Degree Examination, July/August 2021 **Principle of Communication Systems**

Time: 3 hrs.

Max. Marks: 80

(04 Marks)

Note: Answer any FIVE full questions.

- Explain in detail Quaderture carrier multiplexing and demultiplexing systems. 1 a. (05 Marks)
 - With relevant equations and diagrams explain the generation of AM waves using switching b. modulator. (05 Marks)
 - c. Consider a two stage modulator where the message signal occupies a band of 0.3KHz to 4 kHz and the two carrier frequencies are $f_1 = 10$ KHz and $f_2 = 100$ KHz. Evaluate the following :
 - i) Sidebands of DSB SC waves at the output of product modulators
 - ii) Sideband at the output of Band pass filters
 - iii) Passbands and guard bands of two BPF's
 - iv) The order of the two filters assuming at least 15dB attenuation between the passband and stop band. (06 Marks)
 - Explain the working of practical synchronous cost as receiver system for demodulating DSB a. - SC wave. (06 Marks)
 - b. Define percentage modulation with relevant equation illustrate the time domain and frequency domain characteristics of single Tone amplitude modulated wave. (05 Marks)
 - An audio frequency signal 10Sin $2\pi \times 500t$ is used to amplitude modulate a carrier of C. 50 Sin $2\pi \times 10^5$ t. Calculate i) Modulation index ii) Sideband frequencies iii) Amplitude of each sideband iv) Bandwidth v) Total power delivered to the load of 600Ω vi) Plot the (05 Marks) frequency spectrum.
- Define modulation index, frequency deviation and derive the time domain and frequency 3 a. domain representation of wide band FM. (07 Marks)
 - With relevant diagram, explain the balanced slope method of FM demodulation. (05 Marks) b.
 - An angle modulated signal is represented by $\delta(t) = 10 \cos[2\pi \times 10^6 t + 5 \sin 2000\pi t + 10 \sin 3000\pi t]$ C. 3000 π t]volts. Find the following :
 - i) The power in the modulated signal across 1Ω resistor
 - ii) Frequency deviation
 - iii) The deviation ratio
 - iv) The phase deviation

v) The approximate transmission Bandwidth, B_T .

- With block diagram, explain the linear model of PLL. 4 a. (08 Marks)
- Write short notes on Non linearity and its effects in FM system. b. (04 Marks) (04 Marks)
 - Explain FM stereo multiplexing in detail. c.
- For a random process X(t), define mean, correlation and covariance function. Explain the 5 a. properties of autocorrelation function. (06 Marks)
 - b. In a communication receiver, the first stage is a tuned amplifier with an available power gain of 20dB and a noise figure of 10dB. The output of the amplifier is given to the mixer stage whose noise figure is 20dB. Determine the overall noise figure of the system. (05 Marks)

2

	c. Show that the area under probability density function curve is always equal to unit	y. (05 Marks)
6	a. Define white noise and plot the power spectral Density and autocorrelation function low pass filtered white noise.b. Define Noise equivalent Bandwidth and derive the expression for the same.	on of Ideal (08 Marks) (08 Marks)
7	a. Show that the figure of merit of a noisy FM receiver for single tone modulation is	$\frac{3}{3}\beta^2$
1	a. Show that the figure of merit of a florger for single tone fiberation is	2 ^{P .} (08 Marks)
	b. With neat diagram, explain in detail the noisy receiver model.c. Explain the capture effect in FM.	(05 Marks) (05 Marks) (03 Marks)
8	a. Derive the equation for the figure of merit of an AM receiver operating on a single	
	b. Explain FM threshold effect and its reduction methods.c. Give the importance of pre-emphasis and de-emphasis in frequency modulation.	(06 Marks) (04 Marks) (06 Marks)
9	 a. State and explain sampling theorem. State Nyquist rate and Nyquist interval. b. Calculate the nyquist rate and nyquist interval for i) x(t) = 3 Cos 50πt + 10 Sin 300πt + Cos 100πt 	(10 Marks)
	ii) $x(t) = \frac{1}{2\pi} \cos (4000\pi t) \cos (1000\pi t)$	(06 Marks)
10		al to noise
10	a. Explain Quantization process Quantization noise and show that the output signaratio of an uniform quantize increases exponentially with the increasing number	
	sample. b. With neat block diagram, explain TDM system.	(10 Marks) (06 Marks)
	b. With neat block diagram, explain TDM system.	
	2 of 2	